

NATIONAL PHYSICAL LABORATORY

Teddington Middlesex UK TW11 0LW Telephone +44 20 8977 3222

Certificate of Calibration Determination of the shielding properties of Lead-free vinyl samples

This certificate provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, unless permission for the publication of an approved extract has been obtained in writing from the Managing Director. It does not of itself impute to the subject of calibration any attributes beyond those shown by the data contained herein.

FOR:

Barrier Technologies, LLC 7060 W. State Road 84 Suite 8 Davie, Florida USA 33317-7365

DESCRIPTION:

Determination of Lead equivalence of Lead-free vinyl samples according to BS EN 61331-1:2014 using the inverse broad beam geometry.

DATE OF MEASUREMENTS: 09 March 2016

Reference: 2015090276 **Date of Issue:** 13 April 2016

Checked by: Mulls

NPLC01-09/13

Signed:

Page 1 of 3 (Authorised signatory) for Managing Director

Name: G A Bass

NATIONAL PHYSICAL LABORATORY

Continuation Sheet

CONDITIONS:

Distance from x-ray tube to target sample: Ionisation chamber used:

0.8m PTW TW34060-2.5 s/n 000259

All equipment associated with the measurements performed in this report has direct traceability to UK national standards or UKAS accredited calibration facilities.

01551-1.2014 A-lay beam quanties		
<u>X-ray Tube Voltage</u> kV	<u>Total filtration</u> mmAl*	
50	2.5	
70	2.5	
90	2.5	
110	2.5	
120	2.5	
150	25	

 Table I

 61331-1:2014 X-ray beam qualities

*The inherent filtration of the x-ray tube was determined to be 0.3mmAl equivalent

Reference: Checked by: 2015090276 Lilley

Page 2 of 3

NATIONAL PHYSICAL LABORATORY

Continuation Sheet

RESULTS:

Attenuation = 1 -attenuated/un-attenuated x 100

Table II			
Lead-free vinyl sheet, 0.25mm nominal Lead equivalent			
<u>kV</u>	Equivalent Lead thickness	Attenuation	PASS/FAIL
	mm	%	
50	0.2404	98.8	PASS
70	0.2659	95.8	PASS
90	0.2723	91.3	PASS
110	0.2647	87.1	PASS
120	0.2601	85.2	PASS
150	0.2506	79.8	PASS

Table III

Lead-free vinyl sheet	0.35mm nominal	Lead equivalent
-----------------------	----------------	-----------------

<u>kV</u>	Equivalent Lead thickness	Attenuation	PASS/FAIL
	mm	%	
50	0.3462	99.7	PASS
70	0.3640	98.0	PASS
90	0.3647	94.8	PASS
110	0.3510	91.7	PASS
120	0.3428	90.2	PASS
150	0.3256	85.6	PASS

Table IV

Lead-free vinyl sheet, 0.50mm nominal Lead equivalent

<u>kV</u>	Equivalent Lead thickness	Attenuation	PASS/FAIL
	mm	%	
50	*	>99.9	-
70	0.5576	99.3	PASS
90	0.5591	97.6	PASS
110	0.5185	95.7	PASS
120	0.5004	94.7	PASS
150	0.4656	91.6	PASS

*The ionisation current from the chamber was too low to be measured accurately.

UNCERTAINTIES

The uncertainty in the Lead equivalence is $\pm 5\%$. The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95%.

Clause 5.5.3 of IEC 61331-1:2014 states that a relative standard uncertainty of 7% be taken into account in the decision of conformity in assigning the class of the Lead equivalent thickness to the material under test. If t_{Pb} is the standard Lead equivalent thickness class (0.25mm, 0.35mm, 0.5mm or 1mm) and δ_{IB} is the Lead equivalence of the material under test, the condition can be written as:

 $\delta_{IB} \ge 0.93 t_{Pb}$

Reference: 2015090276 Checked by: Mildly

Page 3 of 3

1